Preserving privacy whilst maintaining robust epidemiological predictions.

نویسندگان

  • Marleen Werkman
  • Michael J Tildesley
  • Ellen Brooks-Pollock
  • Matt J Keeling
چکیده

Mathematical models are invaluable tools for quantifying potential epidemics and devising optimal control strategies in case of an outbreak. State-of-the-art models increasingly require detailed individual farm-based and sensitive data, which may not be available due to either lack of capacity for data collection or privacy concerns. However, in many situations, aggregated data are available for use. In this study, we systematically investigate the accuracy of predictions made by mathematical models initialised with varying data aggregations, using the UK 2001 Foot-and-Mouth Disease Epidemic as a case study. We consider the scenario when the only data available are aggregated into spatial grid cells, and develop a metapopulation model where individual farms in a single subpopulation are assumed to behave uniformly and transmit randomly. We also adapt this standard metapopulation model to capture heterogeneity in farm size and composition, using farm census data. Our results show that homogeneous models based on aggregated data overestimate final epidemic size but can perform well for predicting spatial spread. Recognising heterogeneity in farm sizes improves predictions of the final epidemic size, identifying risk areas, determining the likelihood of epidemic take-off and identifying the optimal control strategy. In conclusion, in cases where individual farm-based data are not available, models can still generate meaningful predictions, although care must be taken in their interpretation and use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Solution for Privacy- Preserving, Secure Remote Access to Sensitive Data

Sharing data that contains personally identifiable or sensitive information, such as medical records, always has privacy and security implications. The issues can become rather complex when the methods of access can vary, and accurate individual data needs to be provided whilst mass data release for specific purposes (for example for medical research) also has to be catered for. Although variou...

متن کامل

Privacy Preserving Association Rule Mining Revisited

The privacy preserving data mining (PPDM) has been one of the most interesting, yet challenging, research issues. In the PPDM, we seek to outsource our data for data mining tasks to a third party while maintaining its privacy. In this paper, we revise one of the recent PPDM schemes (i.e., FS) which is designed for privacy preserving association rule mining (PP-ARM). Our analysis shows some limi...

متن کامل

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

Privacy Preserving Probabilistic Record Linkage (P3RL): a novel method for linking existing health-related data and maintaining participant confidentiality

BACKGROUND Record linkage of existing individual health care data is an efficient way to answer important epidemiological research questions. Reuse of individual health-related data faces several problems: Either a unique personal identifier, like social security number, is not available or non-unique person identifiable information, like names, are privacy protected and cannot be accessed. A s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epidemics

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016